Beispiel Nr: 99
$\text{Terme - Additon - Subtraktion - Mulitiplikation - Division}\\ ( \frac{1}{3}x^3-1\frac{1}{3}x^2+\frac{1}{3}x+2)\cdot( x-2) \ $
$ \\ ( \frac{1}{3}x^3-1\frac{1}{3}x^2+\frac{1}{3}x+2)\cdot( x-2)= \\\frac{1}{3}x^3 \cdot x+\frac{1}{3}x^3 \cdot (-2)+(-1\frac{1}{3}x^2) \cdot x+(-1\frac{1}{3}x^2) \cdot (-2)+\frac{1}{3}x \cdot x+\frac{1}{3}x \cdot (-2)+2 \cdot x+2 \cdot (-2)=\\ \,\frac{1}{3}x^4+(-\frac{2}{3}x^3)+(-1\frac{1}{3}x^3)+2\frac{2}{3}x^2+\frac{1}{3}x^2+(-\frac{2}{3}x)+2x+(-4)= \frac{1}{3}x^4-2x^3+3x^2+1\frac{1}{3}x-4$