Beispiel Nr: 22
$\text{Terme - Additon - Subtraktion - Mulitiplikation - Division}\\ \displaystyle \frac{ \frac{1}{3}x^3-1\frac{1}{3}x^2+\frac{1}{3}x+2}{ x-2} \ $
$ \small \begin{matrix} ( \frac{1}{3}x^3&-1\frac{1}{3}x^2&+\frac{1}{3}x&+2&):( x -2 )= \frac{1}{3}x^2 -\frac{2}{3}x -1 \\ \,-( \frac{1}{3}x^3&-\frac{2}{3}x^2) \\ \hline &-\frac{2}{3}x^2&+\frac{1}{3}x&+2&\\ &-(-\frac{2}{3}x^2&+1\frac{1}{3}x) \\ \hline &&-1x&+2&\\ &&-(-1x&+2) \\ \hline &&&0\\ \end{matrix} \\ \normalsize \\ \\ \displaystyle \frac{ \frac{1}{3}x^3-1\frac{1}{3}x^2+\frac{1}{3}x+2}{ x-2}= \frac{1}{3}x^2-\frac{2}{3}x-1$