Beispiel Nr: 28
$\text{Terme - Additon - Subtraktion - Mulitiplikation - Division}\\ \displaystyle \frac{ x^4-3x^2-2}{ x^2+2x+1} \ $
$ \small \begin{matrix} ( x^4&&-3x^2&&-2&):( x^2 +2x +1 )= x^2 -2x \\ \,-( x^4&+2x^3&+x^2) \\ \hline &-2x^3&-4x^2&&-2&\\ &-(-2x^3&-4x^2&-2x) \\ \hline && 2x&-2&\\ \end{matrix} \\ \normalsize \\ \\ \displaystyle \frac{ x^4-3x^2-2}{ x^2+2x+1}= x^2-2x+\frac{ 2x-2}{ x^2+2x+1}$