Beispiel Nr: 13
$ \text{Gegeben:} ax^{3}+bx^{2}+cx+d=0 \\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\ \\ \\ \textbf{Gegeben:} \\ -1x^3+3x^2-4 =0\\ \\ \textbf{Rechnung:} \\\\-1x^3+3x^2-4=0\\ \text{Nullstelle für Polynmomdivision erraten:}-1\\ \,\small \begin{matrix} (-1x^3&+3x^2&&-4&):( x +1 )=-1x^2 +4x -4 \\ \,-(-1x^3&-1x^2) \\ \hline & 4x^2&&-4&\\ &-( 4x^2&+4x) \\ \hline &&-4x&-4&\\ &&-(-4x&-4) \\ \hline &&&0\\ \end{matrix} \\ \normalsize \\ \\ -1x^{2}+4x-4 =0 \\ x_{1/2}=\displaystyle\frac{-4 \pm\sqrt{4^{2}-4\cdot \left(-1\right) \cdot \left(-4\right)}}{2\cdot\left(-1\right)} \\ x_{1/2}=\displaystyle \frac{-4 \pm\sqrt{0}}{-2} \\ x_{1/2}=\displaystyle \frac{-4 \pm0}{-2} \\ x_{1}=\displaystyle \frac{-4 +0}{-2} \qquad x_{2}=\displaystyle \frac{-4 -0}{-2} \\ x_{1}=2 \qquad x_{2}=2 \\ \underline{x_1=-1; \quad1\text{-fache Nullstelle}} \\\underline{x_2=2; \quad2\text{-fache Nullstelle}} \\$